Messieurs les Présidents,

La rade de Brest, large baie protégée, drainant plus de 2 800 km² de bassin versant, fait l'objet de toutes les attentions en matière de politique de qualité de l'eau depuis une vingtaine d'années.

Néanmoins, les résultats de la lutte contre les contaminations demeurent insuffisants, ce qui pénalise l'économie maritime et littorale.

Vos schémas d'aménagement et de gestion des eaux identifient l'équilibre de la qualité des eaux de la rade de Brest et la protection des usages et milieux littoraux comme objectifs majeurs. La commission inter SAGE que vous avez réunie portait spécifiquement sur la rade de Brest.

Préoccupé par la bonne qualité du milieu marin où se côtoient de nombreuses activités économiques, industrielles, portuaires, halieutiques, de pêches et de cultures marines, dépendantes d'un environnement de qualité, je porte à votre connaissance certains éléments pouvant nourrir vos travaux de mise en cohérence des actions et de partage des problématiques pour une approche systémique de la rade. Vous trouverez ces éléments en annexe.

Je souhaite que la dynamique initiée s'inscrive dans un calendrier posant les jalons d'un programme de travail partagé avec les acteurs, en matière d'animation, de connaissance et d'action concrète à entreprendre.
Les services de l'État sont à votre disposition pour vous accompagner dans ces travaux et participer aux réflexions que vous engagerez.

Je vous prie d'agréer, Messieurs les Présidents, l'assurance de ma considération la plus distinguée.

Pascal LELARGE
Qualité des eaux de la rade de Brest
Porter à connaissance

1. Rappel du contexte

Bien commun, la rade de Brest a fait l’objet de 20 ans de politiques publiques à la reconquête de qualité de l’eau et des milieux.

Héritiers de cette histoire, les SAGE partagent aujourd’hui la responsabilité du bon état. Vous avez la charge de fédérer les nombreux acteurs autour de cet enjeu, qu’il s’agisse des collectivités territoriales ou de leurs groupements (BMO, CD, Syndicat de bassin de l’Elorn, L’EPAGA, PNRA...), des usagers professionnels (CDPMEM, CRC, CA...), des associations, de l’État et de ses établissements publics (AELB).

Une communauté de « sachants », notamment au travers la Zone Atelier Brest Iroise, œuvre également pour mieux connaître les milieux physiques, les dysfonctionnements écologiques tels que l’eutrophisation, ou les contaminations chimiques. Le Réseau d’Acquisition de Données sur l’Eau de l’ensemble des acteurs de la rade de Brest est fonctionnel.

La rade de Brest est constituée de 4 masses d’eau au titre de la Directive Cadre du l’Eau : 3 masses d’eau dites de transition correspondant aux estuaires de l’Elorn, de la rivièrê de Daoulas, et de l’Aulne, ainsi qu’une masse d’eau côtière Rade de Brest.
2. Éléments d'éclairage sur l'état de santé de la rade

Large baie protégée d'une superficie de 180 km², la rade de Brest constitue le réceptacle des eaux parcourant 2 800 km² de bassins versant.

Celui de l'Elorn, de 726 km², accueille plus de 300 000 habitants. Fortement urbanisé, il est également agricole (435 km² de SAU). Bien plus vaste, le bassin versant de l'Aulne s'étend des Côtes d'Armor à la rade de Brest et est délimité par les Monts d'Arrée au nord et les Montagnes Noires au sud. Il s'étend ainsi sur près de 1 900 km² et draine un territoire essentiellement agricole. Sont également rattachés à ce bassin, les petits côteds du sud de la rade de Brest ainsi que la rivière du Faou.

![Bassins versants de la Rade (Source : ISTAR/ENSAR, 1993, Etat des lieux Contrat de Baie, 1997)](image)

Ces territoires amont présentent de nombreuses sources de contamination, in fine absorbées par le milieu. Les SAGE Elorn et Aulne les identifient : contaminations bactériologiques, parfois virales, apports de substances dites émergentes (médicamenteuses, perturbateurs endocriniens...), contaminants chimiques liés aux métaux lourds, aux pesticides ou autres produits phytosanitaires, ou encore les apports en nitrate et phosphore, déséquilibrant le milieu à l'aval, et pouvant contribuer aux proliférations phytoplanctoniques et de phycothrix, témoignant d’un état eutrophe de la rade.

Le milieu rade absorbe ces apports, des phénomènes témoignent de déséquilibres et perturbations, mais demeurent encore peu connus. Les proliférations de phytoplancton, les mortalités récentes de coquillages... questionnent sur l'état de santé de la rade et de son premier maillon de la chaîne trophique, le plancton.

La solidarité territoriale entre les bassins versant, à l'amont, et la rade particulièrement sensible aux apports, à l'aval, est la clé de toute action tendant au bon état, et mérite d’être remise au cœur des préoccupations, notamment dans la mise en œuvre des SAGE.
2.1 Qualité chimique, micro-polluants

Après 25 années de suivi du réseau ROCCH, la synthèse d’Ifremer parue en 2017 identifie la rade de Brest comme site particulier et siège d’une contamination chimique détectée en plusieurs points pour plusieurs contaminants métalliques (cadmium, cuivre, chrome...) et contaminants organiques (PCB HAP).

L’état chimique des masses eaux des estuaires de l’Elorn et de l’Aulne est affectée par des substances dites ubiquistes (persistantes dans le milieu, bioaccumulatrices et toxiques) dont l’usage est interdit (TBT) ou dont la présence est liée à d’anciennes activités minières (anciennes mines de plomb argentifères en amont du bassin versant de l’Aulne).

Pour les niveaux relevés dans les mollusques, l’embouchure de l’Aulne se démarque nettement avec des médianes de concentration en cadmium et plomb respectivement 2,5 et 4 fois supérieure à la valeur nationale.

Depuis peu, la question particulière du plomb dans les moules des filières sud de la rade est apparue, mettant en lumière une différence dans les niveaux de contamination en plomb entre les huîtres et les moules. Ces concentrations appellent des fermetures de zones, très pénalisantes pour les mytiliculteurs du secteur. Au total, 5 zones sont non classées pour les moules : Brest eaux profondes, Rivière du Faou, Rivière de l’Aulne, rivière de l'Hôpital Camfrout, anse de Keroullé.

Un projet d’étude particulière sur cette question en rade de Brest est en cours de définition avec la direction générale de l’alimentation (DGAL). Vous serez associés à ces travaux.

Concernant les pesticides, d’importants pics de molécules herbicides et fongicides dans les cours d’eau sont constatés régulièrement en février et juin (jusqu’à plusieurs µg/l) et l’on note la présence de molécule interdite (Carbendazime, Diuron...).

Le Diuron interdit comme pesticide, demeure autorisé comme biocide (traitement des façades, carénage). Des pics d’AMP A (Acide amino méthyl phosphonique, produit de dégradation du glyphosate) et de glyphosate sont réguliers de mai à octobre dans l’Elorn. La limitation de l’usage des pesticides reste un enjeu considérable sur ce territoire.

2.2 Eutrophisation

Pour le bassin versant de l’Aulne, les flux sont constitués à 90 % par les nitrates et sont essentiellement d’origine agricole (77 % agriculture, 15 % dépôt atmosphérique issue surtout de la volatilisation de l’azote des cheptels, 4 % assainissement domestique, 3 % zones imperméabilisées urbanisées, et 1 % industries). Ainsi, le flux annuel d’azote sous forme de nitrates

1 La contamination chimique sur le littoral Loire Bretagne, Chiffoleau 2017, RST RBE BE 2017/02
arrivant en rade de Brest est estimé à 5 600 tonnes. Ramené à la surface, le flux spécifique est de 30kg/ha/an sous forme de nitrates.

Surplus d’azote d’origine agricole lessivé vers les cours d’eau – territoire SAGE AULNE

En 2011, le flux spécifique de ce surplus a été estimé en moyenne à 23 kgN/ha/an sous forme de nitrates, soit environ 40 kgN/ha SAU/an.

Pour l'agriculture, les entrées d'azote se font pour 60 % au niveau des prairies alors que celles-ci ne couvrent que 45 % de la SAU. Concernant les apports d’azote organique, l’influence de l’élevage bovin est importante puisque cet élevage représente 50 % de ces apports dont environ la moitié est non maitrisable. Cette remarque ouvre des perspectives intéressantes pour la mise en œuvre de mesures préconisant des pratiques herbagères à faible fuites d’azote.

Concernant le bassin versant de l’Elorn, les flux sont également d’origine agricole (76 % agriculture, 13 % assainissement domestique, 8 % production naturelle, 2 % piscicultures, 1 % industries). Ainsi, le flux annuel d’azote sous forme de nitrates arrivant en rade de Brest est estimé à 2 400 tonnes. Ramené à la surface, le flux spécifique est de 33kg/ha/an sous forme de nitrates. Si on estime que le flux spécifique est liée à 76 % à l’agriculture, le surplus agricole peut être estimé à 25 kgN total/ha/an, soit 23 kgN/ha/an sous forme de nitrates. Ramené à la SAU (41 000 ha), le flux spécifique de ce surplus peut être globalement évalué à environ 40 kgN/ha SAU/an.

Aussi, le **flux total annuel entrant en rade de Brest** par l’apport de ces deux bassins versant est estimé à 8 800 tonnes d’azote, soit **8 000 tonne d’azote sous forme de nitrates**. Rapporté à la surface des deux bassins, le flux spécifique est de 31 kgN/ha/an sous forme de nitrates. De manière synthétique, on peut estimer un flux spécifique lié au lessivage agricole (SAU) de l’ordre 40kgN/ ha de SAU / an, sous forme de nitrates.

Les actions en faveur de la résorption de la pression azotée et de l’équilibre de la fertilisation gagnent à être poursuivies. L’État y contribue activement par le levier contrôle et surveillance.
• Dérives phytoplanctoniques impactant la qualité des coquillages et risques sanitaires associés

Les apports de sels nutritifs favorisent le développement des microalgues toxiques et les efflorescences de phytoplancton toxiques (Alexandrium minutum, Pseudonitzchia, Dinophysis). La rade est particulièrement concernée : il s’agit du seul site breton où les 3 toxines (DSP, ASP et RSP) sont présentes. Elle détient le record du nombre de mois touchés.

Les toxines paralysantes (PSP) ont été détectées en rade à partir de 2012 avec un niveau en PSP record en France de 11 664 µg/kg, et jusqu’en 2017 de manière dégressive. Le nouvel épisode toxique de juin 2017 a abouti à une contamination des moules au-delà du seuil de sécurité sanitaire, (norme à 800 µg/kg).

La première fermeture liée aux toxines amnésiantes (ASP, norme à 20 mg/kg) touchant les gisements de coquilles Saint Jacques date de 2004/2005 (taux maximum de 50 mg/kg). La pêche à la coquille Saint Jacques reste toujours partiellement fermée en raison du taux important d’ASP (taux maximum atteint en 2017 : 4000 mg/kg). Contrairement aux autres espèces pour lesquelles la décontamination peut s’opérer en quelques semaines, la décontamination de la coquille Saint Jacques s’opère sur plusieurs mois, voire années.

De nombreuses études se sont penchées sur la question des proliférations des micro-algues en rade. Aujourd’hui, le projet MASCOET porté par le CDPMEM, en lien avec Ifremer et le LEMAR vise à mieux comprendre les dynamiques des efflorescences toxiques (Pseudonitzchia/ASP) en rade, les mécanismes de contamination, de décontamination de la coquille Saint Jacques et du pétoncle, pour une meilleure gestion de la pêcherie.

2.3 Qualité bactériologique

La pérennité de la conchyliculture, de la baignade et de la pêche à pied nécessite également une bonne qualité bactériologique des eaux.

• L’enjeu de la qualité bactériologique des masses d’eau peut s’illustrer par l’indicateur du classement sanitaire de production des coquillages

Actuellement, plusieurs zones sont classées pour la production de coquillages vivants :
1 zone eaux profondes, classée A pour les bivalves fouisseurs et non-fouisseurs,
11 zones estran, 1 classée en A pour les bivalves non fouisseurs, et 10 classées B pour les bivalves non fouisseurs et/ou fouisseurs,
2 zones estran classées en C, une toute l’année, la deuxième pendant la période estivale (fouisseurs). Le classement C toute l’année ne permet pas d’exploitation professionnelle de ce secteur.

La qualité sur les coquillages filtreurs est globalement satisfaisante bien que toujours fragile. Concernant les fouisseurs, la contamination des gisements de fond d’estuaires est régulière et déclassante. À ce titre, les travaux en cours pour la révision du classement sanitaire des zones de production de coquillages ne montrent aucune amélioration. Le nouveau classement interviendra au second semestre 2018.

3 Etude sur la prolifération de la micro algue Alexandrium minutum en rade de Brest, R INT ODE Dyneco/pelagos Ifremer 2014, Simulation de l’effet de 3 scénarios de réduction des teneurs de l’Elorn en nitrate sur l’eutrophisation de la Rade de Brest, Ifremer 2007
La carte de l’assainissement des territoires proches de la rade de Brest représente les stations d'épuration et leur capacité de traitement. Les postes de relèvement sont également localisés. Certaines communes ont une part importante de traitement par des systèmes d'assainissement individuel, environ 9% des installations d'assainissement non collectif sont non conformes avec impact sur le milieu.

La carte de la conformité des systèmes d'assainissement vis-à-vis des prescriptions des arrêtés préfectoraux de prescriptions illustre, d’une part, les territoires dont les équipements nécessitent des compléments en matière d’autosurveillance des points de déversement des trop pleins de réseaux, et notamment sur Brest Métropole, Landerneau, Lopéréth, Daoulas, L'Hopital Camfrout, ou encore Le Faou (communes figurées en jaunes).

Sur la presqu’île de Crozon les systèmes souffrent d’intrusions d’eaux parasites qui entraînent des débordements aux stations, des procédures administratives sont en cours.

Globalement l’ensemble du parc de station génère un flux annuel azoté (N global) dans la rade de 224 tonnes d’azote, et un flux de nitrate de 81 tonnes, ce qui s’évalue à l’ordre du pour cent du flux total arrivant dans la rade. En ce qui concerne le phosphore, le flux généré est de 21 tonnes par an. Sans calcul précis dû à la forte variabilité des concentrations, cela représente un taux entre 15 et 35 % du flux total arrivant en rade.

Concernant les postes de refoulement, on note que les débordements ont un impact essentiellement ponctuel surtout en matière de bactériologie, mais qui peuvent être problématique en aval pour les usages. Les collectivités doivent équiper les points principaux de dispositif permettant de comptabiliser les déversements. Aujourd’hui, l’ensemble des postes n’étant à ce jour pas équipés, un bilan global des déversements ne peut être réalisé.

Les outils réglementaires à disposition des élus pour agir sur la question de l’assainissement non collectif en cas de contrôle non conforme sont recensés dans plusieurs codes : articles L2211-1, L2212-1 et L2212-2 du code général des collectivités territoriales et L1331-1, L1331-6, L13318 et L1331-9 du code de la santé publique, à savoir :

- le doublement de la taxe peut être mis en œuvre (bien que relatif au regard des coûts de mise aux normes).
- le maire peut prendre un arrêté de police général relatif à l’assainissement non collectif sur le territoire de sa commune. Si les défauts constatés constituent des manquements à cet arrêté, le contrevenant sera sanctionné d’une amende de 1ère classe, restant peu dissuasif, sauf à ce que des constats réguliers suivis d’amendes soient réalisées.
- Le maire peut mettre en demeure le contrevenant de réaliser les travaux. L’article L1331-1 de CSP prévoir un délai de 4 ans après le constat, délai pouvant être réduit dans certaine condition de danger ou de troubles graves. Ce délai est ramené à 2 ans dans le cadre de la mise en place d’une Zone à Enjeux Sanitaire (ZAES).
- Après mise en demeure restée sans résultats, le maire peut réaliser d’office les travaux après consignation d’une somme dans les mains du comptable public.
- Enfin, le maire peut également user de son pouvoir de police judiciaire pour constater les infractions ou faire appel à la gendarmerie pour constat et rédaction de procès-verbaux.

Par ailleurs, afin d’accélérer et favoriser la mise aux normes de ces installations, la réglementation (arrêté interministériel du 27 avril 2012 relatif aux modalités de l’exécution de la mission de contrôle des installations d’assainissement non collectif) permet de définir des zones à enjeu sanitaire lorsque les dispositifs d’ANC ont un impact sur un usage sensible tel qu’un captaage d’eau pour la consommation humaine, un site conchylicole, de pêche à pied ou de baignade.

Cette procédure permet d’accélérer la mise en conformité des installations défaillantes avec la possibilité de réduire les délais réglementaires. Elle permet également de rendre éligible aux aides financières de l’agence de l’eau Loire-Bretagne davantage d’installations non conformes et non seulement celles présentant un rejet direct au milieu naturel.
Norovirus

Lié à la problématique de l’assainissement, le norovirus est un agent pathogène, très résistant et infectieux, responsable de gastro-entérites aiguës. La contamination des coquillages se fait par des eaux brutes ou insuffisamment épurées, elle est rapide (<1h) et la décontamination lente (plusieurs semaines).

L’indicateur réglementaire de contamination fécal (E. Coli) n’est pas toujours corrélé avec la présence de virus. À ce jour, il n’y a pas de connaissance de la concentration susceptible d’avoir un impact sanitaire. Par ailleurs, il n’existe pas encore de seuil réglementaire défini au niveau Européen. En revanche, une étude est en cours sur le sujet.

En matière d’amélioration de la qualité bactériologique, les résultats restent insuffisants malgré l’ensemble des actions mises en œuvre par les acteurs, ce qui pénalise fortement l’économie maritime et littorale.

Les CLE des SAGE ont souligné les impératifs d’efforts à poursuivre sur l’assainissement (collectif et individuel, travail sur station, branchement, SPANC, question de l’assainissement des habitations légères de loisir très présentes et parfois occupées à l’année...) et sur les apports d’origines agricoles (diagnostic agricole et lutte contre abreuvement direct au cours d’eau).

L’État se tient à vos côtés pour consolider l’approche d’identification et de réglementation, notamment par des outils comme la zone à enjeux sanitaires (ZAES) permettant d’accélérer les mises aux normes des ANC polluants.

2.4. La diminution de la ressource coquillière en rade

Qu’il s’agisse de la prairie, la pétonce ou l’huître plate, la saison de pêche de fin d’année 2017 a été alarmante en présentant des débarquements anormalement faibles. L’expertise Ifremer de février 20184 sur le sujet fait état de 3 pistes à approfondir pour comprendre cette situation :

- la dynamique des stocks, avec la hausse de la prévalence des parasites chez l’huître plate, la prédaton accrus sur le pétonce, mais des recrutements de jeunes individus restant élevés.

- Les maladies bactériennes, virales et parasitaires. La prévalence annuelle du parasite Bonomia ostreae est en augmentation sur le banc du Roz (18 % en 2017 contre 7 % en 2016) et celle du parasite Martellia refringens est du même ordre que les années précédentes (38 % en 2017, 30 % en 2016).

- Les phycotoxines et les contaminants chimiques, constituant des facteurs aggravants.

Il ressort, à ce stade, qu’il n’y pas d’explication univoque à la diminution de la ressource. La conclusion évoque la possibilité d’une conjonction de facteurs aggravants dont le premier tient à l’état très faible des stocks.

4 Expertise n° 18.010 Ifremer, février 2018
2.5. Autres éléments ponctuels

Plusieurs projets de dragage concernent la rade. Les travaux relatifs au développement du port de Brest (infrastructures maritimes quais, polder, dragage...) ont débuté en 2016. Le volume maximum de sédiments à draguer est estimé à 1 053 000 m³. Les opérations de dragage pourraient être retardées d'un an (hiver 2019/2020).

Sur l'Elorn, la commune de Landerneau réfléchit actuellement à un projet de dragage du port.

3. Enjeux

La qualité du milieu marin en connexion avec la reconquête de la qualité des eaux des bassins versant est un enjeu majeur pour le « système » de la rade, son équilibre et la protection des usages littoraux.

Des axes progrès ont été identifiés dans vos SAGE :
• La lutte contre l’érosion des sols, facteur de développement des algues et microalgues avec apports de sels nutritifs et colmatage de la rade.
• La diminution des flux de nutriments, qui restent assez importants malgré des concentrations en baisse (nitrate, phosphore) avec des développements d’algues vertes.
• La résorption des contaminations bactériologiques sur le littoral (baignade, pêche, conchyliculture).
• La diminution de l’usage des produits phytosanitaires domestiques et agricoles.
• La question des contaminations chimiques et impacts dans le biote.

La dynamique initiée par vos travaux inter SAGE doit se poursuivre et s’amplifier pour tendre vers une approche partagée et systémique de l’entité « Rade ».

La résorption des problèmes qualité de l’eau et des milieux nécessite une cohérence de programme d’action inter SAGE et une solide animation. Un lieu de dialogue pour examiner les problèmes depuis la mer et agir concrètement pour la mise en œuvre de solutions amont / aval est un premier jalon.